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Abstract: This study addresses to the robustness of model predictive control in the presence of the
mismatched uncertainty, e.g. disturbance, noise and parameter variations. Model predictive control is
solved online and its control action is fed to the real system with the additional control action that is
required to maintain the controlled trajectories in a simple uncertainty tube in practice where the center
of the aforementioned tube is the trajectory of the nominal model. For this purpose, a sliding mode
controller as variable control structure is designed taking the difference between the real system and
nominal system into consideration. The stability of the overall system is proven taking the modeling

error on the uncertainty model into account.
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1. INTRODUCTION

Model predictive control (MPC), an extension of optimal con-
trol, is a model-based control approach which is able to deal
with the constraints on the states and inputs (Mayne et al.,
2000; Kayacan et al., 2014). The concept of MPC is to com-
pute state trajectories in a finite horizon by minimizing a cost
function consisting of all states and inputs online (Kayacan
et al., 2015c¢). After solving optimization problem, only the first
element of the generated input sequence is fed to the system
(Kayacan et al., 2015a). Then, the finite horizon is shifted over
time for the next sampling time (Morari and Lee, 1999; Qin and
Badgwell, 2003). The same procedure is repeated again when
new measurements or estimates are obtained.

The robust stability of MPC is obtained only if the nominal
model is inherently robust without estimation errors, uncer-
tainties and parameter variations. However, systems are always
subjected to disturbances in real life (Grimm et al., 2004).
Inasmuch as unmodeled uncertainties may result in instability
of systems, robust MPC method has become a crucial topic and
been developed due to the emphasis of the handling uncertain-
ties in practice (Calafiore and Fagiano, 2013; Yan and Wang,
2014). One of the most significant method is the tube-based
approach proposed for state and output feedback MPC (Lang-
son et al., 2004; Mayne et al., 2005, 2006). In these previous
studies, the uncertainty has not been modeled and the additional
control action is designed in which the uncertainty error is
multiplied by a state feedback controller and then the product is
fed to the real system. Furthermore, an integral sliding manifold
(ISM) has been proposed instead of a state feedback controller
(Rubagotti et al., 2011).
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This paper focuses on robust model predictive control for
systems with mismatched uncertainties. The main contribution
of this study is to formulate a tube-based approach by modeling
the uncertainty structure. In order to handle the uncertainties
in the real system, sliding mode control method, which is
inherently robust to uncertainties, is used to design a controller
by taking the difference between the nominal model and real
system. The stability of the overall system is proven by using a
Lyapunov function.

This paper is organized as follows: The previous works are
summarized in Section 2. The controller is designed and the
control structure is presented in Section 3. The system is
presented in Section 4. The simulation results are given in
Section 5. Finally, a brief conclusion is given in Section 6.

2. PROBLEM FORMULATION

The discrete-time linear time-invariant system model is repre-
sented by
X1 = Axg + Buy +wy (1)
where x € R” is the state vector, u € R™ is the control vector
and w € R” is the disturbance vector. The constraints on the
state and input are denoted by
xeX, uel, 2)
where X C R” is closed, U C R™ is compact and they have
their own origin in their own interior. It is assumed that the
disturbance w is bounded
wew 3)
where W is compact and includes the origin.

The nominal system respecting the system (1) is denoted by
Xy+1 = AXy + Bty “4)

It is assumed that the controller i is equal to Kx; where K €
R™*" denotes the coefficients of the controller and the closed-
loop system AX = A+ BK is stable. The disturbance set denoted



by Z for the real system model x;; = AKx; +w fulfills the
following condition,

AkxewcCz )

where @ is Minkowski set addition, the disturbance set Z is
invariant and the origin of the real system.

In order to control the real system with mismatched uncertainty
in (1), a tube-based MPC approach was proposed in (Mayne
and Langson, 2001) as below.

Proposition 1. 1t is presumed that x € X @ Z where Z is the
invariant disturbance for xz; = Axy + Buy +w and Xz =
AX; + Biig. If the control input to the real system u(ii,x,X) =
i(X)+K(x—x), then xp4 € gy ®ZVWeEW.

This proposition clearly expresses that the feedback controller
u(it,x,x) = (%) + K(x — X) enforces the states x of the real
system Xxpy| = AKx, +w to track the states ¥ of the nominal
system X, = AXy + Bii;. This proposed control method has
been called the tube-based approach. In this former tube-based
MPC approach, the states of the nominal model are directly
fed to MPC and thus MPC does not have any information
exchange with the real system (Langson et al., 2004). This
structure was criticized due to the fact that it does not take the
measurements coming from the real system into consideration.
In order to interact MPC with the real-system, a new method
that not only MPC but also the nominal model is initialized
by the measurements of the real system at each sampling time
instant has been proposed for state feedback case (Mayne et al.,
2005) as in the following proposition.

Proposition 2. Tt is presumed that x € ¥ & Z where Z is the
invariant disturbance for x;.i = Ax; + Buy +w and Xp =
AZXy + Biig. If the control input to the real system u(i,x,X) =
i(x) + K(x—x(x)), then x4 € Gppg DZVWEW.

As an alternative method, only initialization of MPC by the
measurements of the real system has been proposed in (Kay-
acan et al., 2015b, 2016). In these studies, all states of the
real system are assumed to be measurable. However, this is
not feasible in practice since number of sensors are generally
less than number of measured variables. For this reason, out-
put feedback MPC has been developed while a Luenberger
observer is employed to estimate immeasurable states (Mayne
et al., 2006).

In addition to a state feedback controller, an integral sliding
manifold (ISM) has been proposed to handle uncertainties
(Rubagotti et al., 2011) as in Proposition 3. In this approach,
measurements coming from the real system are fed to MPC
while the nominal model is not initialized by measurements
coming from the real system.

Proposition 3. Tt is presumed that x € X & Z where Z is the
invariant disturbance for xz; = Axy + Buy +w and X4 =
AXy + Biig. If the control input to the real system u(i,x,x) =
i(x) —ksgn(x —X), then x4 € X ®ZVweW.

In these approaches, the stability analysis is proven over the
real system due to the unmodeled uncertainty. In this paper, the
nonlinear modeling of the uncertainty model is formulated and
then the stability analysis is proven over this uncertainty model
as distinct from the previous ones.

3. ROBUST MODEL PREDICTIVE CONTROL

In the controller design process, it is assumed that the nominal
control input generated by MPC i = Kx is able to stabilize
the nominal system so that A + BK is stable. Since the real
system and the nominal system are not identical, a controller
is required to stabilize the uncertainty model defined as the
difference between the real system and nominal model. The
uncertainty state z is formulated as

z=x—x(x) ©)
where x and X are the states of the real system and nominal
system.

Proposition 4. It is presumed that x € X & Z where Z is the
invariant disturbance for xz,; = Axx + Buy +w and X3 =
AXy + Bii. The uncertainty model is described as a second-
order nonlinear model 7 = h(z) + v where z = x —%(x) is the
output of the uncertainty model while v is the input of the
uncertainty model. If the control input to the real system u =
i(x) +v(x,%(x)), then xp1| € X1 DZYWEW.

The feedback control action v(x,%(x)) in aforementioned propo-
sition, which requires low sensitivity to plant parameter uncer-
tainty and finite-time convergence, will be formulated based
on sliding mode control (SMC) theory. The proposed control
structure is illustrated in Fig. 1.

The uncertainty model is represented by the second-order non-
linear model as follows:

Z=h(z)+v @)
where v is the control input, z is the output of the system and
h(z) is the nonlinear or time-varying dynamics of the system.
The system output z is measurable while the system dynamics
h(z) is not known. It is assumed that the function & is upper
bound by H as follows:

|h|<H ®)

The tracking error is written as

I=z2—2 )
where 7 is the tracking error and z,; is the desired trajectory of
the system.

A sliding surface is defined to track the desired trajectory of the
system as follows:

s=7+AZ (10
where A is a positive constant and denotes the slope of the
sliding surface. As can be seen in (10), the sliding surface
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Fig. 1. Control Scheme



basically consists of the uncertainty error and uncertainty error
rate.

The sliding surface s is linear so that the time derivative of
the sliding surface s must be zero, i.e. s = 0. By taking the
derivative of (10) by time ¢, the rate of the sliding surface is
obtained as follows:

§s=%+A%
=77+ A%

=h(z)+v—724+AZ (11

The equivalent control law v, that achieves § = 0 is written as
follows:

Veq = —h(2) + 24— AZ (12)
Inasmuch as the function / is unknown, the controller law can-
not contain the function £ so that it must contain an additional
term to ensure the sliding motion § = 0 so that the control input
is written as follows:

Veq =Zd — Az
13)
where k is a positive coefficient, i.e. k > 0, and adaptive with
the following rule below:

k=7l s|
where ¥, is a positive coefficient, i.e. . > 0.

V= Vg —ksgn(s)

(14)

Theorem 5. The control algorithm, i.e. u = i(x) + v(x,x(x)),
consists of the sliding mode controller based on the uncertainty
model working in parallel with an MPC controller as shown in
Fig. 1. In addition, if the function 4 is upper bounded by H as
seen in (8) and the final value of the controller coefficient k* in
(13) is large enough, i.e. k* > H, then the uncertainty vector
z converges asymptotically to zero in finite time and sliding
motion will be achieved.

Proof. In order to analyze the system stability, the Lyapunov
function is written as follows:

1 1
V:*Z 7k—k*2
55 +2Yk< )

The time derivative of the Lyapunov function in (15) is written
as follows:

5)

V= ss'—|—£(k—k*)
Ye
If the adaptation rule for the controller gain k in (14) and the
time derivative of the sliding surface in (11) are inserted into
(16), it is obtained as follows:

(16)

V= s(h_ksgn(s))+ s | (k=K

As it is assumed that the function 4 is upper bounded by H, it is
obtained as follows:

A7)

V<|s|(H=k+]|s|(k—k")

<|s|(H—-k) (18)
If the final value of the controller gain £* is large enough as
stated in Theorem 5, i.e. k* > H, then the overall system is
stable, i.e. V < 0.

Remark 1: Since the adaptation rule in (14) is enforced, the
final value of the controller gain is unknown that are determined

during the adaptation of the controller gain, and it is able to
reach large values to make systems stable. This is a superiority
of the proposed approach in this study as distinct from previous
studies in which the fine tuning is required.

Remark 2: It is to be noted that the aim in the control structure is
to converge the uncertainty to zero. For this reason, the desired
values for the uncertainty position, velocity and acceleration
are equal to zero, i.e. zg = Zg3 = Z4 = 0. Taking the desired
values into consideration, the sliding surface in (10) and applied
control input (13) become as follows:

s=7+Az
v=—Az—ksgn(s)

19)
(20)

Remark 3: As can be seen in Theorem 5, the sliding mode
control method as a variable control structure is inherently
robust to uncertainty which is occurred by the modeling error,
parameter variations, and noise. For this reason, the designed
SMC ensures in low sensitivity to plant uncertainty and finite-
time convergence.

4. INVERTED PENDULUM

The system consists of an inverted pendulum mounted on a cart
as illustrated in Fig. 2. The cart is restricted to linear motion
horizontally where the pendulum is constrained to move in the
vertical plane. The control input is the force F that moves the
cart horizontally and the outputs are the angular position of the
pendulum O and the horizontal position of the cart on the axis
&. The variables of the system are represented in Table 1.

Table 1. NOMENCLATURE

Angular position of the pendulum
Horizontal position of the cart

Mass of the cart

Mass of the pendulum

Inertia moment of pendulum

Length to pendulum center of mass
Gravitational acceleration

Viscous friction coefficient for the cart
Force applied to the cart

Disturbance

o muexoe —~ 3 Z¥n D

The equations of motion can be written as follows:

(M +m)E —mlcos08 +mi§*sin® — € =F +d

—mlcos O& + (I+ml*)6 —mglsin® =0 1)

) )

Fig. 2. Inverted Pendulum on a Cart



where 0, &, M, m, I, 1, g, { and d represent respectively
the angular position of the inverted pendulum, the horizontal
position of the cart, the mass of the cart, the mass of the
pendulum, the inertia moment of the pendulum, the length to
pendulum center of mass, the gravitational acceleration, the
viscous friction coefficient and the disturbance.

The aim of the inverted pendulum on a cart is to keep the
pendulum perpendicular to the cart. For this reason, the system
is linearized around zero degree angle, i.e. 8 = 0, and then the
linearized system model is formulated as follows:

X=Ax+Bu+w

y=Cx 22)
where
0 1 0 0 0
0 — (I+ml*)¢  mPgl? I+mil?
= p p = p
A=1lo 0 o 1| o |4
0 mi§  mgl(M+m) 0 ml
L p p p
T 0
I+ml? 01" £
0 3
= p = = =
B 0 , C 1 ;X 9| F
i 0 :
L P

with p = (M +m)(I +ml?) — (mlcos 0)?.
5. SIMULATION RESULTS

In simulation study, the nonlinear model in (21) is considered
as the real system while the linear model in (22) is considered
as the nominal model in Fig. 1. The numerical values in this
study are M = 0.5 kg, m = 0.2 kg, | = 0.3 m, [ = 0.006 m,
g = 9.81 m/s*. The damping coefficient { is set to 0.1 and
0.9 for the nominal system and real system, respectively. The
sampling period of the simulation is set to 0.01 second. The
following MPC formulation employed at each sampling time is
written as follows:

. lx iy 2 2 5
min [ (O Ju0))de -+ (00
x(.)u(.) i
subjectto  %(t) = Ax(t) + Bu(r)
SEEIOES
—30 <u(r) <30 Vre [ty tx+1p)

(23)
where f;, denotes the prediction horizon and is set to 0.4 second,
t; denotes the current time, x denotes the system state, and u
denotes the input. The weighting matrices are set to Q = 1,
R=0.0land P=1.2.

The values A and ¥, for the proposed SMC controller in (20)and
(14) are respectively set to 10 and 5. Also, the controller gain
k for the ISM in (Rubagotti et al., 2011) is set to 5 while
the state feedback for the tube-based approach is set to K =
[0,0,—5,—10]". Moreover, due to the fact that the control law
contains the sgn function, SMC control method endures high-
frequency oscillations,, i.e. chattering. Several methods have
been proposed to solve this problem. In this study, the sgn

function is replaced by the following equation to remove the
chattering effect:

sgn (s) 1= e (24)

where 6 =0.1.

The initial conditions on the states of the system are considered
as [6,8] = [1,0]7. A step external force d = 1 and a sinusoidal
external force d = sin2t as disturbance signals are imposed
respectively on the system at # = 10 second and ¢ = 20 second
to evaluate the proposed control structure in presence of the
mismatched disturbance. The angular position responses are
shown in Fig. 3. As seen, the MPC with SMC results in less
overshoot and settling time than the other methods. Unlike only
MPC applied to the real system, the MPC with SMC is able to
stabilize the system while oscillatory behavior and steady-state
error are not observed.

The control inputs for the MPC with SMC are shown in Fig.
4. The output of the MPC controller becomes zero while the
one of SMC controller does not converge to zero. The reason is
that the uncertainty is occurred only due to the linearization,
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different viscous friction values for the nominal model and
real system, and external disturbances. Therefore, the SMC
controller generates a control signal to handle the uncertainty
problem.

The horizontal velocity is shown in Fig. 5(a). Since the viscous
friction values for the nominal model and real system are differ-
ent, the output of the SMC controller between ¢t = 0 — 10 sec-
onds is around to the force occurred by the difference in viscous
friction coefficients. The maximum value of the uncertainty
vector w can be equal to 4.54 Newton. As seen in Fig. 5(b), the
uncertainty state is around zero. thanks to the proposed MPC
with SMC controller, the mismatched uncertainty problem can
be disregarded in the proposed control structure.

The adaptation of the controller gain k is resented in Fig. 5(c).
The initial condition on the controller is considered as k(0) = 3.
Thanks to the adaptation rule, the controller gain is adjusted
throughout the simulations. Therefore, it is able to reach a large
value which can make the system stable as stated in Remark 1.

6. CONCLUSIONS

The proposed control structure provides robustness to uncer-
tainty with a designed SMC controller. The MPC controller is
solved online while the states of the real system are fed and the
nominal model is initialized by the the states of the real system
at each time instant. The proposed control method, tube-based
MPC, is able to provide that the robust asymptotic stability is
established in the presence of mismatched uncertainties.. It is
practically as simple as the implementation of the conventional
MPC.
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